Four Operators – Four Spaces

Jürgen Appell (Würzburg)

Let X be a space of functions $x : [0,1] \to \mathbb{R}$ (to be specified below). In this talk we are going to consider the following four **operators**: The (linear) multiplication operator $M_{\mu} : X \to X$ defined by $(M_{\mu}x)(t) := \mu(t)x(t)$, where $\mu : [0,1] \to \mathbb{R}$, the (linear) substitution operator $\Sigma_{\varphi} : X \to X$ defined by $(\Sigma_{\varphi}x)(t) := x(\varphi(t))$, where $\varphi : [0,1] \to [0,1]$, the (nonlinear) composition operator $C_f : X \to X$ defined by $(C_f x)(t) := f(x(t))$, where $f : \mathbb{R} \to \mathbb{R}$, and the (nonlinear) superposition operator $S_g : X \to X$ defined by $(S_g x)(t) := g(t, x(t))$, where $g : [0,1] \times \mathbb{R} \to \mathbb{R}$.

The four **spaces** we will work in are the Banach space X = C[0, 1], equipped with the norm $||x||_C := \max \{|x(t)| : 0 \le t \le 1\}$, the Banach space $X = C^1[0, 1]$, equipped with the norm $||x||_{C^1} := |x(0)| + ||x'||_C$, the Banach space X = Lip[0, 1], equipped with the norm $||x||_{Lip} := |x(0)| + lip(x; [0, 1])$, and the Banach space X = BV[0, 1], equipped with the norm $||x||_{BV} := |x(0)| + lip(x; [0, 1])$.

The **properties** of the four operators $A \in \{M_{\mu}, \Sigma_{\varphi}, C_f, S_g\}$ in the four spaces $X \in \{C, C^1, Lip, BV\}$ we are interested in are injectivity, surjectivity, boundedness, continuity, Lipschitz continuity, and compactness. Despite their simple form, these operators exhibit many surprises and pathologies. This is illustrated by a collection of 20 counterexamples which might be useful for your lectures and seminars on real analysis.

Jürgen Appell, Dept. of Mathematics, Univ. of Würzburg, Germany; jurgen@dmuw.de