THE BAIRE HIERARCHY, MULTIFRACTAL DECOMPOSITION SETS

AND Π^0_{γ} -COMPLETENESS

Lars Olsen

University of St. Andrews, Scotland

e-mail: lo-andrews.ac.uk

The Baire hierarchy provides a natural classification of the "complexity" of subsets of a metric space. For a metric space X and an ordinal γ with $1 \leq \gamma < \omega_1$ (where ω_1 is the first uncountable cardinal), the Baire classes $\Sigma^0_{\gamma}(X) = \Sigma^0_{\gamma}$ and $\Pi^0_{\gamma}(X) = \Pi^0_{\gamma}$ are defined inductively by

$$\Sigma_1^0(X) = \left\{ G \subseteq X \mid G \text{ is open} \right\}, \quad \Pi_1^0(X) = \left\{ F \subseteq X \mid F \text{ is closed} \right\},$$

and

$$\Sigma^{0}_{\gamma}(X) = \left\{ \bigcup_{n=1}^{\infty} E_{n} \middle| E_{n} \in \bigcup_{\kappa < \gamma} \Pi^{0}_{\kappa}(X) \right\}, \quad \Pi^{0}_{\gamma}(X) = \left\{ \bigcap_{n=1}^{\infty} E_{n} \middle| E_{n} \in \bigcup_{\kappa < \gamma} \Sigma^{0}_{\kappa}(X) \right\}.$$

We have the following inclusions

$$\begin{split} \Sigma_1^0(X) &\subseteq & \Sigma_2^0(X) &\subseteq & \Sigma_3^0(X) &\subseteq & \dots \\ \Pi_1^0(X) &\subseteq & \Pi_2^0(X) &\subseteq & \Pi_3^0(X) &\subseteq & \dots \end{split}$$

;

this list of inclusions is known as the Baire Hierarchy and gives a stratification of the Borel subsets of X in (at least) ω_1 levels.

This talk will discuss the position of the so-called "multifractal decomposition sets" in the Baire Hierarchy. In particular, we will prove that "multifractal decomposition sets" are the building blocks from which all other Π^0_{γ} sets can be constructed; more, precisely, "multifractal decomposition sets" are Π^0_{γ} -complete.

As an application we find the position of the classical Eggleston-Besicovitch set in the Baire Hierarchy.

1