Abstract number: I17

Invited

Precise lineshape parameters from Doppler-free spectroscopy at low pressures

Tan Y.¹, Xu Y.-R.¹, Hua T.-P.¹, Hu C.-L.¹, <u>Hu S.-M.^{†1}</u>

Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026 China.

 $^\dagger smhu@ustc.edu.cn$

There have been extensive studies on the pressure dependence of line positions and widths of miscellaneous molecules using Doppler-broadened spectroscopy under moderate pressures (10^2-10^5 Pa). However, recent studies show that the pressure dependence at lower pressures could be significantly different. The main experimental difficulty in studying this phenomena is that the detection sensitivity, consequently, the signal-to-noise ratio (SNR), decreases with the sample pressure. Moreover, the collision-induced line shift and broadening is more than three orders of magnitudes smaller than the Doppler width. Using comb-locked cavity-enhanced spectroscopy techniques, such as the cavity ring-down spectroscopy, we could observe spectra with sufficiently high SNR even at very low pressures ($10^{-1}-10^1$ Pa). Meanwhile, by investigating the Doppler-free Lamb-dip spectra which have typical widths of less than 1 MHz, we can determine the line centers and other profile parameters with high accuracy. As a demonstration, we recorded Lamb-dips of ro-vibrational transitions of carbon monoxide broadened by nitrogen near 1.56 μ m at low pressures. The results show a clear difference from that reported at higher pressures, indicating that more physics could be explored in this direction.