Contemporary algebraic and geometric techniques in coding theory and cryptography Summer school — July 18-22, 2022 Università degli Studi della Campania "Luigi Vanvitelli"

Two-weight codes and hemisystems

Valentino Smaldore

Affiliation: Università degli Studi della Basilicata Italy

Abstract

An [n,k]-linear code *C* over the finite field \mathbb{F}_q is a *k*-dimensional subspace of \mathbb{F}_q^n . Vectors in *C* are called *codewords*, and the weight w(v) of $v \in C$ is the number of non-zero entries in *v*. A *two-weight code* is an [n,k]-linear code *C* such that $|\{w : \exists v \in C \setminus \{0\} | w(v) = w\}| = 2$. R. Calderbank and W. M. Kantor in their seminal paper [2], described a connection between two-weight codes, strongly regular graphs and combinatorial structures as regular systems, ovoids and projective (n,k,h_1,h_2) -sets, i.e. proper, nonempty sets Σ of *n* points of the projective space PG(k-1,q) such that every hyperplane meets Σ in either h_1 or h_2 points.

For a subset Ω of \mathbb{F}_q^k , with $\Omega = -\Omega$ and $0 \notin \Omega$, define $G(\Omega)$ to be the graph whose vertices are the vectors of \mathbb{F}_q^k , and two vertices are adjacent if and only if their difference is in Ω . Moreover, let Σ denote the set of points in PG(k-1,q) that correspond to the vectors in Ω , i.e. $\Sigma = \{\langle \mathbf{v} \rangle : \mathbf{v} \in \Omega\}$.

Theorem 0.1 ([2, Theorems 3.1 and 3.2]) Let Ω and Σ be defined as above. If $\Sigma = \{ \langle \mathbf{v_i} \rangle : i = 1, ..., n \}$ is a proper subset of PG(k - 1, q) that spans PG(k - 1, q), then the following are equivalent:

- (i) $G(\Omega)$ is a strongly regular graph;
- (ii) Σ is a projective $(n,k,n-w_1,n-w_2)$ -set for some w_1 and w_2 ;
- (iii) the linear code $C = \{(\mathbf{x} \cdot \mathbf{v_1}, \mathbf{x} \cdot \mathbf{v_2}, \dots, \mathbf{x} \cdot \mathbf{v_n}) : \mathbf{x} \in \mathbb{F}_q^k\}$ (here $\mathbf{x} \cdot \mathbf{v}$ is the classical scalar product) is an [n,k]-linear two-weight code with weights w_1 and w_2 .

In this talk we give a construction of projective sets from hemisystems on the Hermitian surface.

The Hermitian surface \mathscr{U}_3 of $PG(3,q^2)$ is the set of all self-dual points of a non-degenerate unitary polarity of $PG(3,q^2)$. A generator of \mathscr{U}_3 is a line of $PG(3,q^2)$ entirely contained in \mathscr{U}_3 . The generators of the hermitian surface are the totally isotropic lines, the total number of lines of \mathscr{U}_3 is $(q^3 + 1)(q + 1)$ and through any point $P \in \mathscr{U}_3$ there pass exactly q + 1 lines.

Definition 0.2 An *m*-regular system on \mathcal{U}_3 is a set \mathcal{R} of isotropic lines such that every point of \mathcal{U}_3 lies on exactly *m* lines in \mathcal{R} , $0 \le m \le q+1$.

When $m = \frac{q+1}{2}$, the $\left(\frac{q+1}{2}\right)$ -regular system is also called *hemisystem*, since through each point we consider exactly the half of the generators.

In [5], B. Segre introduced the notion of hemisystems and proved the following theorem:

Theorem 0.3 (Segre's Theorem) Let \mathcal{U}_3 be an Hermitian surface. If q is odd, all the m-regular systems on \mathcal{U}_3 are hemistystems.

In [5] was also constructed the first example, q = 3, unique up to isomorphism.

The construction of new hemisystem was an open problem for almost 50 years, and it was conjectured the non existence of hemisystems while $q \neq 3$. But later, in [3], it was constructed by A. Cossidente and T. Penttila an infinite family of hemisystems stabilized by a group isomorphic to $PSL(2,q^2)$. Since then, they were exhibited other constructions of sporadic examples and new infinite families of hemisystem by several authors using different approachs. In [4], considering the Fuhrmann-Torres curve over q^2 naturally embedded in \mathcal{U}_3 , it is constructed a family of hemiststems in $PG(3, p^2)$, while $p = 1 + 16a^2$, with an odd integer *a*. In this talk we investigate the analog construction for $p = 1 + 4a^2$. The main result is stated in the following theorem.

Theorem 0.4 Let p be a prime number where $p = 1 + 4a^2$ with an integer a. Then there exists a hemisystem in the Hermitian surface \mathcal{U}_3 of $PG(3, p^2)$ which is left invariant by a subgroup of PGU(4, p) isomorphic to $PSL(2, p) \times C_{\frac{p+1}{2}}$.

An *m*-regular system on the Hermitian surface provides an *m*-ovoid \mathcal{O} on the elliptic quadric $Q^{-}(5,q)$ which is the image of \mathcal{U}_3 via the *Klein* correspondence. In turn, an *m*-ovoids gives rise to a projective $(m(q^{r+1} +$

1), 6, $m(q^r+1)$, $m(q^r+1) - q^r$)-set and it produces via *linear representation* in AG(6,q), see [1, Theorem 11], a strongly regular graph with parameters:

$$(q^6, m(q-1)(q^3+1), m(q-1)(3+m(q-1)) - q^2, m(q-1)(m(q-1)+1)).$$

Since $m = \frac{q+1}{2}$ we get a strongly regular graph with parameters $(q^6, \frac{(q^3+1)(q^2-1)}{2}, \frac{q^4-5}{4}, \frac{q^4-1}{4})$, and the $(\frac{q+1}{2})$ -ovoid \mathcal{O} is a projective $(\frac{(q^3+1)(q+1)}{2}, 6, \frac{(q^2+1)(q+1)}{2}, \frac{(q^3-q^2+q+1)}{2})$ -set. Theorem (0.1) allows us to see this projective set as a $[\frac{(q^3+1)(q+1)}{2}, 6]$ -linear two-weight code with weights $w_1 = \frac{q^2(q^2-1)}{2}$ and $w_2 = \frac{q^2(q^2+1)}{2}$.

Joint work with Vincenzo Pallozzi Lavorante.

References

- J. Bamberg, S. Kelly, M. Law, T. Penttila, Tight sets and *m*-ovoids of finite polar spaces, Journal of Combinatorial Theory A, 114(7), pp. 1293-1314, 2007.
- [2] R. Calderbank, W. M. Kantor, The geometry of two-weight codes, Bulletin of the London Mathematical Society, 18, pp. 97-122, 1986.
- [3] A. Cossidente, T. Penttila, Hemisystems on the Hermitian surface, Journal of the London Mathematical Society, 72(2), pp. 731-741, 2005.
- [4] G. Korchmáros, G. P. Nagy, P. Speziali, Hemisystems of the Hermitian surface, Journal of Combinatorial Theory A, 165, pp. 408-439, 2019.
- [5] B. Segre, Forme e geometrie hermitiane, con paricolare riguardo al caso finito, Annali di Matematica Pura ed Applicata, 70(1), pp. 1-201, 1965.

Keywords: Hermitian surfaces, hemisystems, strongly regular graphs, two-weight codes