Contemporary algebraic and geometric techniques in coding theory and cryptography

Summer school - July 18-22, 2022
Università degli Studi della Campania "Luigi Vanvitelli"

Two-weight codes and hemisystems

Valentino Smaldore
Affiliation: Università degli Studi della Basilicata
Italy

Abstract

An $[n, k]$-linear code C over the finite field \mathbb{F}_{q} is a k-dimensional subspace of \mathbb{F}_{q}^{n}. Vectors in C are called codewords, and the weight $w(v)$ of $v \in C$ is the number of non-zero entries in v. A two-weight code is an $[n, k]$-linear code C such that $|\{w: \exists v \in C \backslash\{\underline{0}\} w(v)=w\}|=2$. R. Calderbank and W. M. Kantor in their seminal paper [2], described a connection between two-weight codes, strongly regular graphs and combinatorial structures as regular systems, ovoids and projective $\left(n, k, h_{1}, h_{2}\right)$-sets, i.e. proper, nonempty sets Σ of n points of the projective space $\operatorname{PG}(k-1, q)$ such that every hyperplane meets Σ in either h_{1} or h_{2} points.

For a subset Ω of \mathbb{F}_{q}^{k}, with $\Omega=-\Omega$ and $0 \notin \Omega$, define $G(\Omega)$ to be the graph whose vertices are the vectors of \mathbb{F}_{q}^{k}, and two vertices are adjacent if and only if their difference is in Ω. Moreover, let Σ denote the set of points in $\operatorname{PG}(k-1, q)$ that correspond to the vectors in Ω, i.e. $\Sigma=\{\langle\mathbf{v}\rangle: \mathbf{v} \in \Omega\}$.

Theorem 0.1 ([2, Theorems 3.1 and 3.2]) Let Ω and Σ be defined as above. If $\Sigma=\left\{\left\langle\mathbf{v}_{\mathbf{i}}\right\rangle: i=1, \ldots, n\right\}$ is a proper subset of $\mathrm{PG}(k-1, q)$ that spans $P G(k-1, q)$, then the following are equivalent:
(i) $G(\Omega)$ is a strongly regular graph;
(ii) Σ is a projective $\left(n, k, n-w_{1}, n-w_{2}\right)$-set for some w_{1} and w_{2};
(iii) the linear code $C=\left\{\left(\mathbf{x} \cdot \mathbf{v}_{\mathbf{1}}, \mathbf{x} \cdot \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{x} \cdot \mathbf{v}_{\mathbf{n}}\right): \mathbf{x} \in \mathbb{F}_{q}^{k}\right\}$ (here $\mathbf{x} \cdot \mathbf{v}$ is the classical scalar product) is an $[n, k]$-linear two-weight code with weights w_{1} and w_{2}.

In this talk we give a construction of projective sets from hemisystems on the Hermitian surface.
The Hermitian surface \mathscr{U}_{3} of $P G\left(3, q^{2}\right)$ is the set of all self-dual points of a non-degenerate unitary polarity of $P G\left(3, q^{2}\right)$. A generator of \mathscr{U}_{3} is a line of $P G\left(3, q^{2}\right)$ entirely contained in \mathscr{U}_{3}. The generators of the hermitian surface are the totally isotropic lines, the total number of lines of \mathscr{U}_{3} is $\left(q^{3}+1\right)(q+$ $1)$ and through any point $P \in \mathscr{U}_{3}$ there pass exactly $q+1$ lines.

Definition 0.2 An m-regular system on \mathscr{U}_{3} is a set \mathscr{R} of isotropic lines such that every point of \mathscr{U}_{3} lies on exactly m lines in $\mathscr{R}, 0 \leq m \leq q+1$.

When $m=\frac{q+1}{2}$, the $\left(\frac{q+1}{2}\right)$-regular system is also called hemisystem, since through each point we consider exactly the half of the generators.

In [5], B. Segre introduced the notion of hemisystems and proved the following theorem:

Theorem 0.3 (Segre's Theorem) Let \mathscr{U}_{3} be an Hermitian surface. If q is odd, all the m-regular systems on \mathscr{U}_{3} are hemistystems.

In [5] was also constructed the first example, $q=3$, unique up to isomorphism.

The construction of new hemisystem was an open problem for almost 50 years, and it was conjectured the non existence of hemisystems while $q \neq 3$. But later, in [3], it was constructed by A. Cossidente and T. Penttila an infinite family of hemisystems stabilized by a group isomorphic to $\operatorname{PSL}\left(2, q^{2}\right)$. Since then, they were exhibited other constructions of sporadic examples and new infinite families of hemisystem by several authors using different approachs. In [4], considering the Fuhrmann-Torres curve over q^{2} naturally embedded in \mathscr{U}_{3}, it is constructed a family of hemiststems in $P G\left(3, p^{2}\right)$, while $p=1+16 a^{2}$, with an odd integer a. In this talk we investigate the analog construction for $p=1+4 a^{2}$. The main result is stated in the following theorem.

Theorem 0.4 Let p be a prime number where $p=1+4 a^{2}$ with an integer a. Then there exists a hemisystem in the Hermitian surface \mathscr{U}_{3} of $P G\left(3, p^{2}\right)$ which is left invariant by a subgroup of $\operatorname{PGU}(4, p)$ isomorphic to $\operatorname{PSL}(2, p) \times C_{\frac{p+1}{2}}$.

An m-regular system on the Hermitian surface provides an m-ovoid \mathscr{O} on the elliptic quadric $Q^{-}(5, q)$ which is the image of \mathscr{U}_{3} via the Klein correspondence. In turn, an m-ovoids gives rise to a projective $\left(m\left(q^{r+1}+\right.\right.$
1), $\left.6, m\left(q^{r}+1\right), m\left(q^{r}+1\right)-q^{r}\right)$-set and it produces via linear representation in $A G(6, q)$, see [1 , Theorem 11], a strongly regular graph with parameters:
$\left(q^{6}, m(q-1)\left(q^{3}+1\right), m(q-1)(3+m(q-1))-q^{2}, m(q-1)(m(q-1)+1)\right)$.
Since $m=\frac{q+1}{2}$ we get a strongly regular graph with parameters $\left(q^{6}, \frac{\left(q^{3}+1\right)\left(q^{2}-1\right)}{2}, \frac{q^{4}-5}{4}, \frac{q^{4}-1}{4}\right)$, and the $\left(\frac{q+1}{2}\right)$-ovoid \mathscr{O} is a projective $\left(\frac{\left(q^{3}+1\right)(q+1)}{2}, 6, \frac{\left(q^{2}+1\right)(q+1)}{2}, \frac{\left(q^{3}-q^{2}+q+1\right)}{2}\right)$-set. Theorem (0.1) allows us to see this projective set as a $\left[\frac{\left(q^{3}+1\right)(q+1)}{2}, 6\right]$-linear two-weight code with weights $w_{1}=\frac{q^{2}\left(q^{2}-1\right)}{2}$ and $w_{2}=\frac{q^{2}\left(q^{2}+1\right)}{2}$.

Joint work with Vincenzo Pallozzi Lavorante.

References

[1] J. Bamberg, S. Kelly, M. Law, T. Penttila, Tight sets and m-ovoids of finite polar spaces, Journal of Combinatorial Theory A, 114(7), pp. 12931314, 2007.
[2] R. Calderbank, W. M. Kantor, The geometry of two-weight codes, Bulletin of the London Mathematical Society, 18, pp. 97-122, 1986.
[3] A. Cossidente, T. Penttila, Hemisystems on the Hermitian surface, Journal of the London Mathematical Society, 72(2), pp. 731-741, 2005.
[4] G. Korchmáros, G. P. Nagy, P. Speziali, Hemisystems of the Hermitian surface, Journal of Combinatorial Theory A, 165, pp. 408-439, 2019.
[5] B. Segre, Forme e geometrie hermitiane, con paricolare riguardo al caso finito, Annali di Matematica Pura ed Applicata, 70(1), pp. 1-201, 1965.

Keywords: Hermitian surfaces, hemisystems, strongly regular graphs, two-weight codes

