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Abstract
Reed–Solomon codes are a well–known technique to represent data in

the form of vectors, such that the data can be recovered even if some vec-
tor coordinates are corrupted. These codes have many properties. Their
parameters are optimal. They allow reconstructability of coordinates that
have been erased. They ensure the privacy of the data against an adver-
sary learning many coordinates. They are compatible with the addition and
multiplication of data. Nevertheless, they suffer from some limitations. For
instance, the storage size of vector coordinates grows logarithmically with
the number of coordinates: in order to have long Reed–Solomon codes, one
must work on large finite fields. So–called algebraic geometry (AG) codes
are a generalization of Reed–Solomon codes that enjoy the same proper-
ties, while being free of these limitations. Therefore, the use of AG codes
provides complexity gains and turns out to be useful in several applications
such as distributed storage [4], distributed computation on secrets [7], and
zero–knowledge proofs [5].

Algebraic geometry codes are constructed by evaluating vector spaces of
functions, called Riemann–Roch spaces, at the rational points on a curve. It
follows that the computation of these spaces is crucial for the implementa-
tion of AG codes. However, computing large Riemann–Roch spaces for
projective curves still constitutes a major algorithmic and practical chal-
lenge. Recently, an algorithm for the computation of Riemann–Roch spaces
of plane curves with so–called ordinary singularities has been proposed [2].
Until now, no complexity exponent for curves with so–called non–ordinary
singularities was known. Nevertheless, a generic singular curve admits non–
ordinary singularities. Moreover, the models of curves used to build AG
codes with good parameters, e.g. modular curves, have non–ordinary singu-
larities [10]. The goal of this paper is to present a new efficient algorithm to



compute Riemann–Roch spaces of every plane curves, including the non–
ordinary ones. This is a joint work with S. Abelard, A. Couvreur and G.
Lecerf, published at Journal of Complexity [1].

Our work is in the vein of the fundamental theory conceived by Brill
and Noether [6], often called the geometric method. Let C be a projective
plane curve defined over a perfect field K. A divisor on C is a formal sum of
points on the curve. It is said to be smooth if all points in its decomposition
are smooth points of the curve and non–smooth otherwise. The aim is to
compute a basis of the Riemann–Roch space associated with a smooth di-
visor D, denoted L(D). The input K–rational divisor D is decomposed into
D = D+ −D−, where D+ and D− are effective divisors with disjoint sup-
ports. To the curve C is associated a so–called adjoint divisor, denoted A ,
related to the singularities of C . The Brill–Noether method is mainly divided
into two parts, as follows. First, one computes a homogeneous polynomial
H that can serve as the common denominator of a basis of L(D). Brill and
Noether gave sufficient conditions on such a polynomial in terms of A and
D, that is

Div(H)≥ A +D+.

For reasons of efficiency, it is of practical interest that H is of degree d as
small as possible. Then, one computes the polynomials G1, ...,Gℓ of degree
d such that Gi/H for i = 1, ..., ℓ form a basis of L(D). These polynomials are
obtained as a basis of homogeneous polynomials of degree d which satisfy

Div(G)≥ Div(H)−D.

Let us mention that to deal with the computation of Riemann–Roch
spaces of curves, one can also use another family of algorithms, called arith-
metic. The most advanced algorithm of this family is due to Hess [8] and
is implemented in the computer algebra systems MAGMA and SINGULAR.
However, the complexity exponent of this algorithm has not been analysed
so far, and recent work based on Brill and Noether’s theory seems to confirm
that the geometric method is the most efficient in terms of complexity.

An ordinary curve admits a local factorization around each singular point
which allows to write its adjunction divisor A very simply. This local fac-
torisation does not hold as soon as we consider a non–ordinary singularity,
hence the need to find new tools to write the adjunction divisor.

First, we propose the rewriting of the adjunction divisor A in terms of
the Puiseux series. We can then exploit the fast algorithms recently devel-
oped for the computation of Puiseux expansions at the germs of curves [11].



Then, we give an optimal upper bound for the degree d of the homogeneous
polynomial H which serves as the common denominator of a basis of the
Riemann–Roch space, namely (see [1, Proposition 12])

d ≥ (δ −1)(δ −2)+degD+

2
,

where δ denotes the degree of the curve. The computation of the denomina-
tor H and the numerators Gi can therefore be approached using classical lin-
ear algebra methods, by solving linear systems whose number of equations
depends on D and A . However, by reformulating this problem in terms of
structured linear algebra, we benefit from generally faster algorithms [9]. In
sum, we obtain the following main result.

Theorem ([1, Theorem 3]). Let K be a perfect field. Let F ∈ K[x,y,z] be
a homogeneous and absolutely irreducible polynomial of degree δ , that de-
fines a curve C . Let D be a smooth K–rational divisor of C . Suppose that
the characteristic of K is zero or bigger than δ . Then, a basis of L(D) can be
computed with a probabilistic algorithm of Las Vegas type with an expected
number of

Õ((δ 2 +degD+)
ω)

operations in K, where 2 ≤ ω ≤ 3 is a feasible exponent for linear algebra.

The curves used in the construction of AG codes were for the most part
limited to those for which the Riemann–Roch bases were already known.
This new work and the ones that will follow will allow the construction of
AG codes from more general curves.

Let us conclude with two open questions for future works. First, the use
of Puiseux series developments, a fundamental tool for writing the adjunc-
tion condition in our work, is less well adapted to finite fields, and limits
the computation of Riemann–Roch spaces presented here to curves defined
over fields of characteristic zero or bigger than the degree of the curve. It
is therefore necessary to find new tools to replace Puiseux series, free from
this limitation. Identifying the tool which is best suited to the context and
adapting to it what has already been developed for non–ordinary curves in
the present paper constitutes the major problem to be faced.

The second question concerns the computation of Riemann–Roch spaces
of surfaces. The geometric construction of codes from curves is valid on
higher dimensional varieties, and some work has been undertaken on sur-
faces [3]. One of the motivations for studying codes from surfaces is based
on the number of rational points of the latter: while a curve defined over a



finite field Fq has O(q) rational points, a surface has O(q2) rational points.
Therefore, the use of surfaces yields codes that are generally longer than
codes from curves, and consequently allows to work on smaller finite fields,
where the arithmetic is faster. In contrast with the situation of curves, al-
gorithms for computing Riemann–Roch spaces of surfaces have been very
little studied and, to our knowledge, no complexity exponent is known in
this context. Proposing a geometric method and conceiving an algorithm
for the efficient computation of Riemann–Roch spaces of surfaces will pave
the way to the construction of completely new families of AG codes from
surfaces.
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