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Abstract
This talk deals with the geometric description of some special classes

of codes endowed with the Hamming and the rank metric, namely minimal
codes.

Let Fq be the finite field with q element and let k,n two positive integers.
The Hamming support of a vector v ∈ Fn

q is σH(v) = {i | vi ̸= 0} ⊆ [n] and
its Hamming weight is wtH(v) = |σH(v)|. An [n,k]q code is a nonzero Fq-
linear subspace C ⊆ Fn

q of dimension k. Its elements are called codewords.
The minimum distance of C is the integer d(C ) =min{wtH(c) | c∈C , c ̸=
0} and its maximum weight is max{wtH(c) | c∈C }. If d = d(C ) is known,
we say that C is an [n,k,d]q code. A generator matrix G ∈ Fk×n

q of C
is a matrix such that rowsp(G) = C . Finally, codes C and C ′ are called
(monomially) equivalent if there exists an Fq-linear isometry f : Fn

q → Fn
q

with f (C ) = C ′. Recall that an [n,k]q code C is nondegenerate if there is
no i ∈ [n] with ci = 0 for all c ∈ C .

Nondegenerate codes in the Hamming metric have a well-known geo-
metric description; see also [4].

Definition. A projective [n,k,d]q system P is a finite set of n points (counted
with multiplicity) of PG(k−1,q) that do not all lie on a hyperplane and such
that

d = n−max{|H ∩P| : H ⊆ PG(k−1,q), dim(H) = k−2}.

Projective [n,k,d]q systems P and P ′ are equivalent if there exists φ ∈
PGL(k− 1,q) mapping P to P ′ which preserves the multiplicities of the
points.

Theorem. There is a correspondence between the (monomial) equivalence
classes of nondegenerate [n,k,d]q linear codes and the equivalence classes
of projective [n,k,d]q systems.



The Hamming distance is not the only metric that is used in coding the-
ory. In this talk, we are interested also in the rank metric, which is the one
induced by the rank weight. In order to define it, we need to fix n and m
positive integers.

For a vector v ∈ Fn
qm and an ordered basis Γ = {γ1, . . . ,γm} of the field

extension Fqm/Fq, let Γ(v) ∈ Fn×m
q be the matrix defined by

vi =
m

∑
j=1

Γ(v)i jγ j.

Note that Γ(v) is constructed by simply transposing v and then expanding
each entry over the basis Γ. The support of a vector v ∈ Fn

qm is the column
space of Γ(v). It is denoted by σΓ(v)⊆ Fn

q.
In the sequel, for v ∈ Fn

qm we let σ rk(v) := σΓ(v) be the rank support
of v, where Γ is any basis of Fqm/Fq. The support is well-defined and does
not depend on the choice of basis Γ. The rank (weight) of a vector v is the
Fq-dimension of its support, denoted by rk(v).

Rank-metric codes and their fundamental parameters are defined as fol-
lows.

A rank-metric code is an Fqm-linear subspace C ⊆Fn
qm . Its elements are

called codewords. The integer n is the length of the code. The dimension of
C is the dimension as an Fqm-vector space and the minimum rank distance
of a nonzero code C is

drk(C ) := min{rk(v) : v ∈ C , v ̸= 0}.

We also define the minimum distance of the zero code to be n + 1. We
say that C is an [n,k,d]qm/q code if it has length n, dimension k and mini-
mum distance d. When the minimum distance is not known or is irrelevant,
we write [n,k]qm/q. A generator matrix of an [n,k]qm/q code is a matrix
G ∈ Fk×n

qm whose rows generate C as an Fqm-linear space. If the columns of
G are linear independent over Fq, then the code is said nondegenerate.

A (linear, rank-metric) isometry of Fn
qm is an Fqm-linear automorphism ϕ

of Fn
qm that preserves the rank weight, i.e., such that rk(v) = rk(ϕ(v)) for all

v ∈ Fn
qm . It is known that the isometry group of Fn

qm , say G (q,m,n), is gen-
erated by the (nonzero) scalar multiplications of Fqm and the linear group
GLn(q). More precisely, G (q,m,n) ∼= F∗

qm ×GLn(q), which (right-)acts on
Fn

qm via
(F∗

qm ×GLn(q))×Fn
qm −→ Fn

qm

((α,A),v) 7−→ αvA.

As their Hamming-metric counterpart, also nondegenerate rank-metric
codes have a geometric interpratation.



Definition. An [n,k,d]qm/q system is an n-dimensional Fq-space U ⊆ Fk
qm

with the properties that ⟨U⟩Fqm = Fk
qm and

d = n−max
{

dimFq(U ∩H) : H is an Fqm-hyperplane of Fk
qm

}
. (1)

When the parameters are not relevant, we simply call such an object a q-
system.

Theorem. There is a 1-to-1 correspondence between equivalence classes
of nondegenerate [n,k,d]qm/q rank-metric codes and equivalence classes of
[n,k,d]qm/q systems.

The geometric interpretation of codes in the Hamming and rank met-
ric gives one of the most fascinating applications in the theory of minimal
codes. A code is minimal if all its codewords are minimal, i.e. their (rank
or Hamming) support does not contain the support of any other linear in-
dependent codeword. The study of the minimal codewords of a linear code
finds application in combinatorics, in the analysis of the Voronoi region for
decoding purposes and in secret sharing schemes.

The aim of the talk is to explain the correspondence between nondegen-
erate minimal codes in the Hamming metric and strong blocking sets and
the one between nondegenerate minimal codes in the rank metric and linear
cutting blocking sets. While strong blocking sets have been studied in the
past years also in relation to codes, linear cutting blocking sets have been
introduced only recently in [3].

Cutting blocking sets are defined as follows.

Definition. Let r,N be positive integers with r < N. An r-blocking set M
in PG(N,q) is strong if for every pair of (N − r)-flats Λ,Λ′ of PG(N,q) we
have

M ∩Λ ⊆ M ∩Λ
′ ⇐⇒ Λ = Λ

′.

Equivalently, an r-blocking set M ⊆ PG(N,q) is strong if and only if for
every (N − r)-dimensional subspace Λ of PG(N,q) we have ⟨M ∩Λ⟩= Λ.

The correspondence described above between projective [n,k,d]q sys-
tems and nondegenerate [n,k,d]q linear codes extends to a correspondence
between equivalence classes of [n,k,d]q minimal codes and equivalence classes
of projective [n,k,d]q systems that are strong blocking sets.

In the rank metric case, the q-analogue of strong blocking set is given by
linear cutting blocking sets, which are formally defined as follows.



Definition. A [n,k]qm/q system U is called a linear cutting blocking set if
for every Fqm-hyperplane H we have ⟨H ∩U⟩Fqm = H.

Also in this case, we will show that the correspondence between non-
degenerate rank-metric codes and q-systems extends to a correspondence
between nondegenerate equivalence classes of minimal rank-metric codes
and equivalence classes of linear cutting blocking sets.

The description of minimal rank-metric codes via the q-analogues of
strong blocking sets allows us to establish a lower bound for their length.
More precisely, we find that a minimal rank-metric code C ⊆ Fn

qm of dimen-
sion k must satisfy

n ≥ k+m−1. (2)

We also show that a nondegenerate rank-metric code is minimal if and only if
the associated Hamming-metric code is minimal (under the correspondence
described earlier). This result naturally connects the theories of minimal
codes in the two metrics and makes it possible to transfer/compare results
across them.

A major, rather curious difference between minimal codes in the rank
and in the Hamming metric appears to be in the role played by the field size
q with respect to bounds and existence results. While in the Hamming metric
the field size q is a crucial parameter (e.g., minimal codes do not exist for
lengths that are too small compared to a suitable multiple of the field size),
most of the bounds and existence results we can derive for minimal rank-
metric codes do not depend on q, even when this quantity explicitly shows
up in the computations.
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