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Abstract

A matrix code is a subspace C of m× n matrices over Fq endowed
with the rank metric defined as d(A,B) = Rank(A − B). We de-
note by k the dimension of C as a subspace of Fm×n

q and its basis by
⟨C1, . . . ,Ck⟩, where Ci ∈ Fm×n

q are linearly independent. Since their
introduction in 1951 by Loo-Keng Hu, rank metric error-correcting
codes have found applications in various domains such as network
coding, space-time coding and public key cryptography. The grow-
ing interest in the latter domain is due to the urgent necessity in the
cryptographic community to find and explore problems that are hard
to solve, even for an attacker that has access to a quantum computer.
The security of classical (in contrast to post-quantum) public key cryp-
tography is based on the hardness of factorisation and the discrete log
problem, both of which can be solved in polynomial time using Shor’s
quantum algorithm [13]. Thus, for building post-quantum crypto-
graphic schemes we need one-way functions that are easy to compute
on a classical computer, but hard to invert both in the classical and
the quantum setting. The problem we are exploring in this work,
called the Matrix code equivalence (MCE), gives rise to such a one-
way function. Formally, the MCE problem can be defined as follows.

MCE(k, n,m, C,D):
Input: Two k-dimensional matrix codes C,D ⊂ Mm,n(q)
Question: Find – if any – A ∈ GLm(q),B ∈ GLn(q) such that for all
C ∈ C, it holds that ACB ∈ D.

The map φ : C 7→ ACB is called an isometry between C and D.
An isometry preserves the rank i.e. RankC = Rankφ(C).



Our motivation for studying the MCE problem comes from the fact
that it can be considered as a cryptographic group action. A group ac-
tion is considered cryptographic when it has some hardness properties
that are useful for cryptographic applications (see, for instance [1]).
In the case of MCE, the isometries φ ∈ GLm(q) × GLn(q) form a
group that acts on the set of k-dimensional matrix codes of size m×n
over a base field Fq. The group action is simply applying the map
φ : C 7→ ACB, and it constitutes a cryptographic group action, only
if the MCE problem is hard. This makes MCE a good candidate for
constructing post-quantum cryptographic schemes. More specifically,
as with every ”graph isomorphism”-like problem, we can construct a
sigma protocol to be used as an identification scheme or to be trans-
formed to a digital signature scheme via the Fiat-Shamir transform. In
related work, the Hamming variation of the Code Equivalence problem
has been used to build the LESS-FM [2] signature scheme.

Before we useMCE as an underlying hard problem in different cryp-
tographic applications, we need to do a thorough analysis on its com-
plexity. The Hamming metric version of the problem, simply known
as Code Equivalence, was first studied by Leon [9] and it was recently
improved by Beullens [4]. Sendrier [12] proposed the Support Splitting
Algorithm (SSA), which takes a different approach and is exponential
in the dimension of the hull. The rank metric version has been intro-
duced by Berger in [3], but it was only recently that Couvreur et al. [7]
showed the first concrete statements about its hardness. Namely, they
showed that MCE is at least as hard as the Code Equivalence prob-
lem in the Hamming metric, while for only right equivalence, or when
the codes are Fqm-linear, the problem becomes easy. In this work, we
describe the first explicit algorithms for solving MCE.

First, we show that MCE can be reduced to a well-explored prob-
lem, called Quadratic Maps Linear Equivalence (QMLE). QMLE is a
variant of the Isomorphism of Polynomials (IP) problem , first defined
by Patarin in [10] for the purpose of designing a ”graph isomorphism”-
like identification scheme and a digital signature using the Fiat-Shamir
transform. The QMLE problem can be formally defined as follows.

QMLE(N, k,F ,P):
Input: Two k-tuples of multivariate polynomials F = (f1, f2, . . . , fk),
P = (p1, p2, . . . , pk) ∈ Fq[x1, . . . , xN ]k

Question: Find – if any – S ∈ GLN (q),T ∈ GLk(q) such that
P(x) = F(xS)T.

In this work, we show how a positive instance (N, k,F ,P) of



the homogenous version of QMLE can be transformed to a positive
instance (k,N,N, C,D) of MCE, and similarly, how a positive in-
stance (k, n,m, C,D) of MCE can be transformed to a positive instance
(m+n, k,F ,P) of the homogenous version of QMLE. The latter reduc-
tion is more significant as it allows us to derive the first algorithm for
solving the MCE problem. Specifically, we describe a generalization of
a birthday-based approach previously developed for the QMLE prob-
lem [6]. This results in an algorithm for solvingMCE with a complexity

of O∗(q
2
3
(n+m)). However, our reduction shows that a QMLE instance

derived from an MCE instance has a specific structure. Namely, the

unknown matrix S is of the form

[
A 0
0 B⊤

]
. The consequences of

this structure are twofold. First, an algebraic modelization of the
problem results in a bilinear system of equations. Such a system can
naively be solved in the square root of the time it takes to solve a
polynomial system with the same parameters but without the bilin-
ear structure.1 Second, the bilinear structure can be exploited in the
birthday-based approach to decrease the collision-search domain and
thus, significantly reduce the complexity of the overall algorithm. This
optimization can be used for a certain subset of parameters, roughly
when k ≤ m+ n, and it allows us to propose a refined algorithm that
runs in time O∗(qm) deterministically.

To confirm our theoretical findings, we implemented both algo-
rithms and used them to solve randomly generated positive instances
of the MCE problem. Our algorithms are implemented in MAGMA [5]
and use the F4 [8] algorithm for parts of the computation that require
solving a polynomial system of equations. Our experimental results
show that the first algorithm has a success probability higher than
63%, which is consistent with birthday-based algorithms. Recall that
the second algorithm is deterministic and can be applied roughly when
k ≤ m + n. The running times that we obtain reflect its superiority
over the first algorithm and are aligned with our theoretical findings.
In conclusion, these results provide a better understanding of the hard-
ness of the MCE problem for different parameter sets.

This work was presented for the first time at The Twelfth Interna-
tional Workshop on Coding and Cryptography (WCC 2022) and an
extended abstract can be found at [11]. This is a joint work with Krijn
Reijnders and Simona Samardjiska.

1In the balanced case where m = n, which is also the hardest.
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