SELF-MANAGEMENT OF CONTAINERS DEPLOYMENT IN GEO-DISTRIBUTED ENVIRONMENTS

Fabiana Rossi

University of Rome Tor Vergata

f.rossi@ing.uniroma2.it

InfQ 2019

June 10th, 2019 Caserta, Italy

ELASTICITY AND PLACEMENT PROBLEM

- New scenario: IoT edge/fog computing
- New challenges: heterogeneity of computing resources and dynamism of working conditions
- New requirement: adapt at run-time the application deployment
 - Elasticity problem
 - Placement problem
- New software architectures: container-based architectures

ELASTICITY AND PLACEMENT PROBLEM

Elasticity Problem

Placement Problem

RESEARCH QUESTIONS

How can we model the placement and the elasticity problem?

How do network latencies affect performances?

What is the role of QoS attributes in determining the container-based application deployment?

How can containers be efficiently deployed to work in presence of mobile devices? How can the containerized deployment model be customized to represent features and requirements of a different context?

What are the challenges of deploying containers in a geo-distributed enviroment?

RESEARCH NEEDS

Need of orchestration framework which can

execute containerized applications in a heterogeneous and geo-distributed environment

be equipped with centralized and decentralized deployment policies

provide adaptation capacities

HORIZONTAL AND VERTICAL SCALING OF CONTAINER-BASED APPLICATIONS USING REINFORCEMENT LEARNING *

How can we model the elasticity problem?

Main contribution:

- Autonomic elasticity of container-based applications
 - Horizontal or Vertical scaling
 - Horizontal and Vertical scaling

Reinforcement Learning algorithms:

- Q-learning
- Model-based

* proc. of the IEEE CLOUD 2019 - Milan, Italy, July 2019.

SYSTEM DEFINITION

Per-application RL agent

RL agent adapts:

- Number of containers
- Amount of resources assigned to each application container

Application state: s = (k, u, c)

Goal: minimize the deployment cost

Action carried out in the state s: a

- Horizontal or vertical scaling (5 action model)
- Horizontal and vertical scaling (9 action model)

IMMEDIATE COST

What is the role of QoS attributes in determining the container-based application deployment?

REINFORCEMENT LEARNING ALGORITHMS

Q(s, a): estimate of long-term cost due to the execution of action a in s

Q-learning

- uses Q(s, a) to choose the action to be performed in state s
- action selection policy: ε-greedy
- estimates Q(s, a) from experience:

$$Q(s_i, a_i) \leftarrow (1 - \alpha)Q(s_i, a_i) + \alpha \left[c_i + \gamma \min_{a' \in \mathcal{A}(s_{i+1})} Q(s_{i+1}, a')\right]$$

Model-based

- selects the best action in terms of Q(s, a)
- uses Bellman equation to update Q(s, a):

$$\begin{aligned} & \text{Unknown, but estimated} \\ & Q(s,a) = \sum_{s' \in \mathcal{S}} p(s'|s,a) \left[c(s,a,s') + \gamma \min_{a' \in \mathcal{A}} Q(s',a') \right] \quad \stackrel{\forall s \in \mathcal{S},}{\forall a \in \mathcal{A}(s)} \end{aligned}$$

Need of orchestration framework

ELASTIC DOCKER SWARM (EDS)

Workload used in the prototype-based experiments.

500

400

300

EXPERIMENTAL RESULTS

Application performance using the 5-action adaptation model and weights $w_{\text{perf}} = 0.90$, $w_{\text{res}} = 0.09$, $w_{\text{adp}} = 0.01$.

ELASTIC DEPLOYMENT OF SOFTWARE CONTAINERS IN GEO-DISTRIBUTED COMPUTING ENVIRONMENTS *

How can we model the placement and the elasticity problem?

What are the challenges of deploying containers in a geo-distributed enviroment?

How do network latencies affect performances?

* proc. of IEEE ISCC 2019 - Barcelona, Spain, July 2019.

TWO-STEP DEPLOYMENT ADAPTATION POLICY

First Stepp Exploit horizontal and vertical elasticity of containers by means of RL-based policies. Q-learning Model-based Second Step Determine the container placement on geo-distributed environment: ILP formulation Network-aware heuristic

SOLUTION OVERVIEW

We take into account

- time needed to deploy every container in VMs
- number of application instances
- assigned CPU share
- application performance requirements
 - expressed in terms of response time percentile

$$c(s, a, s') = w_{\text{perf}} \mathbb{1}_{\{R(k+\tilde{k}, u', c+\tilde{c}) > R_{\max}\}} + w_{\text{res}} \frac{(k+\tilde{k})(c+\tilde{c})}{K_{\max}} + w_{\text{adp}} \frac{D}{D_{\max}}$$

SOLUTION OVERVIEW

We take into account

- network delay between VMs
- number of active VMs
- time needed to deploy every container in VMs

Solution proposed

- ILP formulation
- Network-aware heuristic

Placement Problem

Second Step

Application performance and run-time deployment adaptation ($w_{perf} = 0.90$, $w_{res} = 0.09$, $w_{adp} = 0.01$).

Application workload used in simulation.

Application performance and run-time deployment adaptation ($w_{perf} = 0.90$, $w_{res} = 0.09$, $w_{adp} = 0.01$).

Application workload used in simulation.

RESEARCH QUESTIONS

How can we model the placement and the elasticity problem?

How do network latencies affect performances?

What is the role of QoS attributes in determining the container-based application deployment?

How can containers be efficiently deployed to work in presence of mobile devices?

What are the challenges of deploying containers in a geo-distributed enviroment? How can the containerized deployment model be customized to represent features and requirements of a different context?

FUTURE WORKS

Placement Heuristics

Multi-level adaptation

Multi-component adaptation

loT and Mobility

Elastic Docker Swarm in Fog environment

THANK YOU!

Fabiana Rossi University of Rome Tor Vergata

f.rossi@ing.uniroma2.it http://www.ce.uniroma2.it/~fabiana/